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Abstract

Industrial control systems (ICS) are designed to be resilient, capable of recovering

from process faults and failures with limited impact to operations. Current ICS

resiliency strategies use redundant PLCs. However, these redundant PLCs, being of

similar make and model, can be exploited by the same cyber attack, defeating the

ICS’s resiliency strategy.

This research proposes a resiliency strategy for ICS that employs an active de-

fense technique to remove the cyber common cause failure. The resiliency of the

active defense strategy is compared to traditional ICS resiliency by implementing

both strategies in a semi-simulated wastewater treatment plant aeration basin that

experiences a cyber attack. The active defense technique was shown to maintain ef-

fective treatment of the wastewater through the cyber attack where the traditional

implementation allowed a process disruption that prevented the effective treatment

of the wastewater.
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INCREASING CYBER RESILIENCY

OF INDUSTRIAL CONTROL SYSTEMS

I. Introduction

1.1 Motivation

January 28, 1986, America watched as Space Shuttle Challenger and its crew of

seven disintegrated 73 seconds into flight. Hot gases leaked from joints in the solid

rocket booster that exposed the shuttle to extreme aerodynamic forces it was not

designed to handle. The joints of the solid rocket booster sections are sealed using

rubber O-rings that compress under the high forces during flight. Two O-rings are

used in case the primary O-ring does not establish a perfect seal [13]. Regardless of

this redundancy, cold temperatures did not allow the primary or redundant O-ring

to compress and seal the joint, leading to a catastrophic failure and a grim day for

the United States.

Common cause failures such as the cold temperatures for the Challenger’s O-rings

remove any redundancy designed into the system. Redundancy is only effective if a

single point of failure between the components does not exist.

Similar to the astronautical community, process control also designs redundancy

into their systems. Similarly, process control uses identical controllers for both the

primary and redundant controller. The focus of redundancy in process control is on

controller hardware failures that occur over time due to normal usage, not necessarily

a physical or cyber event causing the failure [10]. This lack of diversity in primary

and redundant controllers leaves the industrial control system (ICS) susceptible to a

1
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cyber attack that exploits the vulnerability found in both controllers (a common cause

failure). This research proposes a combined active defense and controller resiliency

strategy for process control to reduce the likelihood of a cyber attack being a common

cause failure.

1.2 Research Goal and Approach

Since current ICS resiliency strategies do not use diverse primary and redundant

programmable logic controllers (PLCs), the overall goal of this research is to design

and test a resiliency strategy for ICS that incorporates diverse PLCs, this strategy is

referred to as active defense. To be of value, the active defense strategy needs to:

1. Perform in a similar manner to traditional ICS resiliency strategies in terms of

its ability to accurately control the process during a failure.

2. Outperform traditional ICS resiliency strategies during a cyber attack (i.e.,

cyber is not a common cause failure for the strategy).

The goal of this research is to demonstrate how the active defense strategy im-

proves the cyber resiliency of an ICS without sacrificing control performance. In

pursuit of this goal, this research took the following steps.

1. Developed criteria for measuring the resiliency of an ICS.

2. Developed a test bed to measure the resiliency of varying ICS resiliency strate-

gies.

3. Developed hardware and software that enables two PLCs of different vendors

to function as a redundant pair.

2
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1.3 Contributions

The proposed research makes the following contributions to the process control

community:

1. A model aeration basin was created that incorporates actual ICS components to

measure ICS resiliency. The hardware-in-the-loop model can be used for future

experimentation or ICS training.

2. Hardware and software were successfully designed to allow PLCs of different

vendors to function as a redundant pair. While this solution requires more

work to be accurately implemented in process control, it shows multi-vendor

resiliency schemes are feasible.

3. During a cyber attack scenario, an active defense resiliency strategy incorporat-

ing primary and redundant PLCs of different vendors was shown to out-perform

traditional ICS resiliency strategies. While active defense strategies are typically

found in informational technology (IT) environments, the benefit of a combined

active defense and controller resiliency strategy for ICS was demonstrated in

this research.

4. Experimental factors were varied to determine the impact each factor has on the

performance of the resiliency strategies. Understanding what factors impact re-

siliency performance allows for the design of improved ICS resiliency strategies.

The active defense and traditional resiliency strategies were applied in multiple

configurations by modifying the following factors.

(a) The processes’s sensitivity.

(b) PLC vendor.

(c) The redundancy scheme (e.g., hot or cold).

3
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In general, this research proposes an active defense strategy to improve the cyber

resiliency of an ICS by reducing the likelihood of cyber being a common cause failure

for the system.

4
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II. Background

2.1 Active Defense

The SANS Institute [7] generalizes cyber security strategy by describing actions

that can be carried out to improve cyber security. This sliding scale of cyber secu-

rity includes architecture, passive defense, active defense, intelligence and offense. If

implemented properly, lower level actions (e.g., architecture and passive defense) can

bolster security more than high level actions (i.e., offensive operations).

Architecture refers to the design, implementation and maintenance of the system.

Essentially, security should be designed into the system, not bolted on after the fact

[7].

Passive defense includes any added system that protects against threats, but re-

quires no human interaction [7]. Firewalls, intrusion detection systems and anti-virus

are common passive defense techniques. While effective, architecture and passive

defense techniques are not enough to keep out a sophisticated and well-resourced

attacker [7].

Active defense begins once the attacker is inside the network. Active defense is

accomplished through the identification of the attack, developing an understanding

of the attacker and having the flexibility to respond to the attack [7]. The response

to the attack only includes operations within the network, not a counterattack upon

the adversary.

2.1.1 Moving Target Defense.

Moving target defense (MTD) focuses on changing the attack surface presented

to the attacker at any one time [8]. By varying the attack surface, the resources and

time required to compromise the system are increased [19].

5
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A static configuration allows the attacker to become familiar with a system, al-

lowing for identification of system weak points and exploit development [19]. Moving

target defense attempts to maintain attacker unfamiliarity and prevent the attack

from moving beyond reconnaissance [9]. This constant state of unfamiliarity can be

created by two different movement types [19]: (i) system configuration movement;

and (ii) transforming the individual configurations. System configuration movement

is randomly switching between each of the individual configurations. Individual con-

figurations are defined by a multitude of factors (e.g., IP addresses, port numbers and

operating systems). Combining both movement types creates nearly endless combi-

nations limiting the attacker’s ability to detect a pattern within the system.

Implementations of moving target defense vary greatly, but each focuses on plat-

form diversity and rotation through these platforms. Morphisec Cyber Security [9]

identifies three levels at which moving target defense takes place. At the network level,

network topology such as IP addresses, port numbers and traffic can be changed to

confuse the attacker. At the host level, OS level resources and configurations can

be modified. Lastly, the application layer allows for modifying memory, compliers,

source code, versions and routing execution through different hosts.

Argonne National Laboratory’s multiple OS Rotational Environment [1] uses mul-

tiple servers, each running different operating systems. This level of diversity increases

attacker uncertainty and the resources required for a successful attack. Using the

same idea, Argonne National Laboratory also switches between web servers to limit

the amount of time the attacker can interact with the server. This limited interaction

time makes reconnaissance difficult, hopefully leading to less zero day developments.

6
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2.1.2 Moving Target Defense in ICS.

As with most cyber security techniques, MTD has been developed for traditional

IT environments. Davidson et al. [3] notes the unique challenges of employing MTD

on ICS (e.g., reliance on data availability, deterministic control loops and reliability

requirements). However, the authors did note data space randomization, address

space randomization and configuration randomization seemed feasible.

This paper focuses on creating a combined MTD and controller resiliency strategy

for ICS without modification to program and application memory or execution. The

strategy can be employed as an active defense technique when an attack against the

ICS has been detected or as a backup when a traditional hardware failure occurs.

This strategy only provides movement between configurations. For this reason,

the alternate configuration must be kept isolated and hidden from the attacker. Since

the strategy is both a redundancy and active defense technique, the resiliency of the

ICS is improved compared to current ICS redundancy schemes that are susceptible

to a cyber common cause failure.

2.2 Resiliency

Resilient control systems are designed so that the occurrence of undesirable events

is minimized [18]. Zhu et al. [18] outlines five criteria to measure the resiliency of a

control system.

1. Protection Time: The time that the system can withstand an incident with-

out performance degradation.

2. Degrading Time: The time that the system reaches its maximal performance

disruption due to an incident.

3. Identification Time: The time the system takes to identify an incident.
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4. Recover Time: The time that the system needs to recover (e.g., normal op-

eration) after an incident.

5. Performance Degradation Maximal system performance disruption due to

an incident.

These metrics can be improved in different manners, (e.g, protection time can

only be improved by incident avoidance). Other metrics (e.g., degrading time) can

be improved by incident mitigation and minimization.

2.3 Resiliency through Redundancy

Eliminating undesirable incidents from occurring within an ICS is difficult as sen-

sors, actuators, controllers and networks will all experience failures at some point.

Since the incident cannot be avoided, ICS must minimize the impact of the inci-

dent. This mitigation (or minimization) is traditionally done through redundancy of

components. For example, purchasing and installing multiple sensors and actuators

such as utilizing two of the same flow meters (sensor redundancy) or pumps (actua-

tor redundancy) when only one is necessary for operation. Having a duplicate PLC

ready to take over process control if the primary PLC fails is an example of control

redundancy.

A failure in the control portion of the system can have more severe and further

reaching effects than a failed sensor or actuator. A sensor or actuator generally only

influences a small piece of the system, where a controller touches multiple sensors and

actuators throughout the system. Any interruption in control can cause cascading

and compounding effects within the process. Since the controller influences multiple

portions of the process, control redundancy is generally more complex and expensive

than sensor or actuator redundancy. Due to complexity and cost there are different

8
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levels of control redundancy based on the criticality of the process being controlled

[14]. However, general characteristics apply to all resiliency strategies regardless of

complexity.

2.3.1 Characteristics of Redundancy Solutions.

Downer [4] discusses redundancy and reliability in complex technical systems,

proposing four qualities that define a redundant system.

1. Complexity: Adding redundant components can increase the reliability of the

system, but too many redundant components can actually become a source

of unreliability. This increase in unreliability stems from the complexity of

managing multiple redundant components with added software or hardware.

As redundancy tends to increase complexity, simplistic design tends to increase

reliability. To be properly redundant, a system must implement redundancy in

moderation to avoid unreliability driven by complexity.

2. Independence: Redundancy is only achieved if the redundant component suc-

cessfully takes over for a failed primary component (i.e., common cause failures

should be avoided).

3. Propagation: Propagation of failure, also known as cascading effects occurs

when one failure spurs the failure of another component, subsystem or entire

system.

4. Human: The link between all components in any system is the human. The

human builds, tests and validates the system. Poor installation, maintenance or

implementation can lead to an immediate failure in the primary and redundant

components.
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Finding the balance between each of these characteristics is the challenge engineers

face when designing redundant solutions–even more so as the cyber environment adds

additional challenges. Redundancy approaches in process control must adapt to this

new cyber threat and create a resilient system.

2.3.2 Redundancy in Process Control Today.

Redundancy within ICS is generally implemented during the installation of the

system. Traditional redundancy in ICS is accomplished by the integrator installing

identical controllers for both the primary and redundant systems. For example, if an

integrator installs Allen-Bradley as the primary hardware, the redundant hardware

will likely be Allen-Bradley.

Multiple vendors offer a redundancy-enabled, high availability PLC. This high

availability PLC is a top of the line model with a CPU capable of handling the

extra cycles redundancy requires. With a redundancy-enabled PLC, the customer

then purchases the appropriate number of redundant CPU modules and redundant

input/output modules. The redundancy modules facilitate switchover and the cross

loading of data from the primary CPU to the redundant CPU [11].

Allen-Bradley offers a redundancy module (1756 RM2), that allows a user to link

another rack containing a redundant CPU and communications modules as seen in

Figure 1 [11].

2.3.3 Functions of Redundancy Modules.

Redundancy modules allow the ICS to switchover from the faulted or failed pri-

mary controller to the redundant controller. A switchover occurs when the fault or

failure is detected and a control signal is sent to activate the redundant PLC. The

redundancy module ensures the primary PLC has been cross loading process data to
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Figure 1. Allen-Bradley redundancy solution.

the redundant PLC so it can take control without causing a disruption in the process.

Allen-Bradley accomplishes switchover and cross loading using two redundancy

modules. One redundancy module is located within the primary rack containing the

controlling I/O, CPU and communications. This redundancy module is connected

via fiber optic cable to another redundancy module within a symmetric rack [11].

2.3.3.1 Switchover.

Switchover includes recognizing an error state and transitioning from the primary

PLC to the secondary PLC. The speed in which a redundancy module can execute

these tasks determines the length of time in an uncontrolled state.

The total time to switchover (detection and transition) varies and depends upon

program size, program design, network speed and CPU speed. The Allen-Bradley

1756-RM2 claims that with a network update time of 10 ms, switchover should take

between 80 ms and 220 ms. With this speed, Allen-Bradley claims the redundant

PLC will be in control of the process in time to avoid causing a bump in high priority

outputs [11]. General Electric's high availability PLC (RX3I Hot Standby) can facili-

tate switchover within a single logic scan or 3.133 ms, claiming a bumpless transition

as well [5].
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The speed at which switchover must occur, just like the level of redundancy, is

driven by the type of process. If the process does not deviate beyond an acceptable

limit from its set point during periods where it is uncontrolled (e.g., PLCs are offline),

switchover time is not as critical [5].

2.3.3.2 Cross Loading.

Cross loading provides the redundant controller with the same process data the

primary controller is receiving. Cross loading is necessary to avoid a control bump

when the system switches from the primary controller to the secondary controller.

Cross loading generally occurs after each PLC logic scan. The primary controller's

CPU and redundancy module facilitate cross loading, thus cross loading can impact

PLC scan times.

Just as switchover time is driven by process tolerance, so is the cross loading of

data. For extremely sensitive processes where each millisecond counts, there are ways

to optimize data cross loading. Creating a ladder logic structure of large programs

to avoid using jumps and deleting unused tags can reduce scan time. Aliasing tags

instead of using moves and creating more tags to store inputs and outputs can also

reduce scan time. Most processes can be controlled properly with an acceptable

amount of disturbance with program optimization and using a highly capable CPU

with low switchover time [11].

2.3.4 Common Redundancy Schemes.

Redundancy implementations vary, allowing for different levels of redundancy at

different prices and complexity. Each implementation has different levels of sophis-

tication for accomplishing switchover and cross loading. Table 1 summarizes the

different redundancy schemes [14].
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Regardless of the strategy, redundancy in process control currently uses identical

PLCs for both the primary and redundant controller. From a cyber redundancy per-

spective, these identical controllers mean a successful cyber attack against the primary

controller will likely lead to a successful cyber attack on the redundant controller.

2.4 Cyber Redundancy in ICS

ICS rely on robust design to defend against cyber attacks, if they attempt to

defend at all. That is, ICS are designed to prevent an attack from ever occurring, not

to limit the attack's effects and return to normal operation. To establish resiliency,

ICS must be designed to be fault and cyber tolerant [6].

Instead of hoping to completely prevent intrusion, the modern process control

architecture should have an active defense and resiliency strategy. This active defense

strategy is becoming more necessary as passive defense techniques such as perimeter

defense and intrusion detection are thwarted by attackers’ growing knowledge and

skill [15].

Babineau et al. [2] proposes four methods to create cyber tolerance on a naval

ship control system which are applicable to most control systems. While Babineau et

al. does not mention active defense, the methods proposed are consistent with active

defense strategies.

1. Diversification: Increasing the degree of difficulty for an attacker by em-

ploying redundant but diverse components within the system that cannot be

targeted with the same attack.

2. Configuration Hopping: Preventing the attacker from understanding which

configuration she is attempting to attack.

3. Data Continuity Checking: Cross checking process data from multiple sources
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to ensure integrity and identify modification.

4. Tactical Forensics: Determining if a system failure is due to cyber or physical

malfunction.

Also discussed by Babineau et al. are criteria for rating redundant solutions that

implement these strategies. The scoring criteria are organized into two categories,

each category with sub-criteria.

1. Security Score Factors

• Deterrence: The more difficult the target is to attack, the less likely it is

to be attacked.

• Real-Time Defense: Defending against an underway attack.

• Restoration: Recovering after an attack has been executed.

2. Cost Score Factors

• Collateral System Impacts: Impact of the solution on the performance

of the rest of the system.

• Implementation Cost: The cost to install, use and maintain the solu-

tion.

• Life Cycle Cost: The cost associated with keeping the solution opera-

tional over the system's life.

This paper focuses on showing how a diverse redundancy implementation for ICS

can also serve as an active defense technique to increase resiliency. Diversity will be

implemented using primary and redundant programmable logic controllers of different

vendors to improve cyber tolerance according to the security score factors. Note that

cost score factors are left for future work.
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Table 1. Redundancy schemes.

Cold
Switchover: A notification regarding the fault is pushed to

an operator overseeing the process. The operator addresses

the issue by troubleshooting or requesting service on the

unit. No standby PLC immediately available.

Cross Loading: None.

Warm
Switchover: PLC operates in “shadow mode” where it is

constantly looking for a heartbeat signal from the primary

PLC. If the heartbeat is lost, the redundant PLC assumes

control.

Cross Loading: None.

Hot
Switchover: Same as warm redundancy.

Cross Loading: The redundant PLC is receiving the same

process data as primary controller allowing it to assume con-

trol without causing a bump within the process. A redun-

dancy module provides the CPU cycles necessary to transfer

process data to the redundant controller after each PLC logic

scan.

Voting
Switchover: Multiple PLCs are receiving real-time process

data as in hot redundancy, but all PLCs are outputting to a

decision agent. This agent compares each output, selecting

the output that is in the majority as the control signal.

Cross Loading: Same as hot redundancy.
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III. Sewage Treatment Test-Bed

A wastewater treatment plant was chosen as the physical process on which to

implement the diverse redundancy strategy. This type of facility was chosen due to

having unrestricted access to a fully functioning wastewater site. The owner of the

facility provided in depth instruction on each stage of the process and documentation

of the plant (e.g., ladder logic, schematics and operating ranges). With the knowledge

provided by the wastewater plant, a well-informed model of the aeration basin was

created that includes actual ICS equipment.

3.1 Sewage Treatment Background

Sewage treatment cleans wastewater from business and residential areas, out-

putting the clean water into a nearby river. The process is linear with water entering

large screens to remove any large debris (e.g., plastic bags, sticks and other trash).

From the screens, water is then pumped via the lift station to a higher elevation to

allow it to flow through the treatment process via gravity. After the initial screens

and lift station, sand and grit are settled out and removed in preliminary treatment.

After preliminary treatment, bacteria are used to remove the organic matter within

wastewater [16]. The biological process used to clean wastewater requires specific en-

vironmental conditions to allow bacteria to optimally decompose the organic matter

within the water. This process occurs in the aeration basin and will serve as the

model for the experiment.

The aeration basin is a large concrete basin divided into multiple zones. Under-

neath the aeration basin are diffusers which are connected to blowers. The diffusers

bubble oxygen provided by the blowers at different rates into each zone of the basin.

There are two main zones within the aeration basin, each zone receiving different
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amounts of oxygen. The aerobic zone receives the most oxygen while the combined

anaerobic and anoxic zone receives the least oxygen [16]. The varying levels of oxygen

ensure the bacteria are in an optimal environment to decompose the organic matter

in the water.

Within each zone of the aeration basin, sensors are used to determine if the

wastewater is in optimal conditions for decomposition. For example, Dissolved Oxy-

gen (DO) (the amount of free O2 molecules within the water) is used to determine

and control bacteria health within the aerobic zone. Oxygen Reduction Potential

(ORP) (the concentration of electron acceptors and donators within the water) is

used to determine and control the bacteria health within the combined anaerobic and

anoxic zone. While over simplified, the aerobic and combined anaerobic and anoxic

zones comprise the aeration basin which is where biological treatment takes place.

Figure 2 shows where the aeration basin fits within the overall wastewater treatment

process while Figure 3 shows the design of the aeration basin itself. Following aera-

tion, wastewater enters the final clarifier where the bacteria and decomposed organic

matter settle out of the water. To kill any remaining bacteria that did not settle out

in the clarifier, the water is treated with ultra-violet light before exiting the plant.

The ICS components within the aeration basin include:

1. Blowers to provide air to the aeration basin.

2. Variable frequency drive (VFD) to control the speed of the blowers.

3. Motor driven valves to control the amount of air going into each zone of the

aeration basin.

4. Dissolved oxygen meter to measure the DO in the aerobic zone of the aeration

basin.

5. ORP meter to measure the ORP in the anaerobic zone of the aeration basin.
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Figure 2. Wastewater treatment process overview.

Figure 3. Aeration basin design.

3.2 Aeration Basin Model

Figure 4 shows an overview of the aeration basin model installed in a 42 cm x

55 cm x 30 cm Pelican case. Figure 5 shows a detailed description of the lower half

of the case, identifying the two PLCs, solid state relays, network switch and Y-Box.
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Figure 6 shows a detailed description the upper portion of the case, identifying the

two digital displays, VFD, blower, alarm lights and electromechanical relay.

The aeration basin model implements a primary PLC and a redundant PLC from

different manufacturers. The primary PLC is an Allen-Bradley ControlLogix con-

taining the following modules: 1756 CPU, analog output, analog input, digital input,

digital output and ethernet module. The second PLC is a General Electric series 90-

30 containing the following modules: 90-30 CPU with ethernet, digital input, digital

output and mixed analog input/output. The variable frequency drive used within the

aeration basin model is an Allen-Bradley Powerflex 40.

The model uses a Y-Box to emulate the sensors and actuators within the process.

The Y-Box is capable of receiving current and voltage and outputting current and

voltage (see [17] for a detailed description of the Y-Box). Using the Y-Box, a Python

program sends simulated process data to the PLC. The PLC responds by controlling

an actuator such as VFD or valve. The Python program receives these actuator

outputs from the PLC and updates the inputs (DO and ORP). The new DO and

ORP are then output to the PLC to repeat the cycle.

The aeration basin continuously loops through the following steps to simulate the

aeration basin.

1. The PLC outputs valve settings for the aerobic and combined anaerobic and

anoxic zone from 0-100 percent. Valve position determines how much air is

allowed into each zone. The PLC also instructs the VFD to increase or decrease

frequency to maintain a constant air pressure from the blowers. The more open

the valve, the more oxygen needed from the blowers to maintain pressure, thus

the higher frequency needed from the VFD.

2. The Y-Box forwards this valve signal via a serial connection to a python pro-

gram.
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Figure 4. Aeration basin model.

3. The Python program increases or decreases the DO and ORP levels based on

the position of the valve, sending the updated DO and ORP value to the Y-Box
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Figure 5. Bottom portion of aeration basin model.

via a serial connection. The more open the valve, the larger the increase in DO

and ORP.

4. The Y-Box receives the updated DO and ORP value and forwards it as a 0-20

mA signal to the PLC.

5. The PLC receives the updated DO and ORP value and determines the next

valve position to output to reach (or maintain) the DO and ORP set points.

3.3 Diverse Redundancy Implementation

To implement the diverse redundancy strategy, another PLC of a different vendor

is used as the redundant PLC. The redundant PLC can operate in a hot or cold

implementation.
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Figure 6. Top portion of aeration basin model.

To achieve hot standby, both PLCs must receive inputs from the process at all

times. Since the PLCs are of different vendors, modules that facilitate the transfer

of data and switchover are not available for either manufacturer. Thus, a new design

was necessary.

3.3.1 Switchover.

To accomplish switchover, one PLC’s outputs must drive the control of the process

while the other PLC’s outputs are silenced or ignored. Using relays for each PLC

output, a control scheme was implemented to choose which output circuit would

control the process.

A relay receives a control signal (on or off) and either completes a circuit (on) or

opens the circuit (off). For example, a light bulb wired into a relay will only light

up if the relay is receiving an “on” control signal. Connecting each PLC’s output to
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a relay sets one of the PLC’s output to “on” while turning the other PLC’s output

off. Daisy chaining all relay control signals for an individual PLC's outputs together

allows for the silencing (or activation) of that PLC's outputs.

Connecting a single relay to both PLCs’ relays allows for a selection between the

primary PLC’s output or the redundant PLC’s outputs. The relay operates as a

switch, completing the circuit for one PLC’s set of outputs or the others. The Y-Box

is in control of activating or deactivating the relay. The PLCs receive this Y-Box

control signal as well, thus the PLCs know when they are serving as the primary or

redundant controller. Figure 7 shows the switchover design.

Figure 7. Switchover implementation.

23



www.manaraa.com

3.3.2 Cross Loading.

To allow both PLCs to receive the inputs, the original design was to continue

the 0-20 mA input from one PLC’s input module to the other PLC’s input module,

wiring the PLC inputs in series. This solution does not function properly as PLC

hardware is designed with the assumption that the PLC is the last device in the

loop [5, 11]. Placing one PLC before another (wiring one input into another) caused

inaccurate input readings. Several options were considered to address this issue, but

a current splitter was chosen as it allows for symmetrical inputs to go to both PLCs

without requiring extra sensors. Figure 8 shows a block diagram for the cross loading

implementation.

Figure 8. Cross loading implementation.
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IV. Implementation Challenges

A Proportional Integral Derivative (PID) controls an input (process variable) by

outputting a value (control variable) to cause the process variable to move towards

the set point. If the process variable does not move towards the set point, the PID

increases its control variable. As the process variable moves towards the set point,

the PID reduces its control variable as to not overshoot the set point. To obtain and

maintain the process’s set point, the PID continuously measures the process variable

and sends a control variable to move process values towards their set point.

A PID expects that its output (control variable) will cause a change in its input

(process variable). If the right amount of change is not observed, the PID increases

or decreases its control variable appropriately. If a PID is receiving a process variable

value, but its control variable output is being silenced (as is the case for a redundant

controller’s PID), the PID’s contro variable output may not align with the process

variable value it is receiving. Since the primary and redundant PIDs are not com-

pletely identical nor run synchronously, the redundant PLC’s PID control variable

output will not align with the process variable it is receiving (the input caused by the

primary PLC’s PID control output). Over time, the redundant PLC’s PID either in-

creases its control variable output to the maximum (or decreases it to the minimum)

to get the process variable to respond appropriately. If the redundant PID were to

take over the process in this state, it would send the max (or min) control variable

value to the actuators (causing a bump in the process), not the control variable value

that corresponds with the set point.

Unfortunately, the model contains slight variances leading to PID instability when

standing by in redundant mode. During pilot studies the PIDs used in the ladder

logic caused inaccurate cross loading. To overcome this instability, the redundant

PID was disabled by moving the current process variable into the set point of the
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PID. The PID functions as if the process is in steady state and maintains its last

control output. When switchover occurs, the PID will not send an extreme value

that knocks the process from steady state.
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V. Experimental Design

This section explains the experiment and analyses that are performed on the

proposed active defense technique.

5.1 Hardware

Pilot studies were conducted to ensure the hardware was performing switchover

and cross loading for the redundant PLC properly. Current and voltage measurements

were taken at different points within the aeration basin model to accomplish this

validation. The time for a switchover is measured from when the switchover signal

is sent to when the redundant PLC’s output impacts the process. The python code

used to test the time for switchover can be found in appendix A, section 1.3.

5.2 Aeration Basin Simulation Experiment

The experiment consists of running the aeration basin model through a cyber

attack scenario while varying multiple experiment factors. Process data is collected

for each combination of factors allowing the calculation of resiliency metrics.

Each trial will follow these steps:

1. The primary PLC in the aeration basin model will control the DO to the set

point of 2.0 mg/L. The PLC will maintain this set point establishing a steady

state. Each trial runs for two minutes to establish this initial steady state.

2. The primary PLC will experience a cyber attack causing a deviation from the

set point. This will vary depending on the trial’s factors (e.g., redundancy

strategy and active defense).
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3. The aeration basin model will employ the redundancy and active defense strat-

egy it was assigned for the specific trial to overcome the cyber attack and

re-establish the 2.0 mg/L DO set point.

4. The trial is concluded once the model re-establishes a DO steady state at the

2.0 mg/L set point.

The aeration basin simulation python code can be found in Appendix A, Section

1.1. The ladder logic executed on the Allen-Bradley PLC can be found in Appendix

B while the General Electric’s ladder logic can be found in Appendix C.

5.3.1 Cyber Attack Scenario.

Two different cyber attacks will be executed based on which controller is serving

as the primary controller. Only one type of cyber attack will be executed during each

trial.

1. Allen-Bradley Attack: A Common Industrial Protocol (CIP) packet is sent

to place the Allen-Bradley controller in program mode. The Allen-Bradley PLC

will remain in program mode for ten seconds, halting execution of ladder logic.

The Allen-Bradley PLC is then set back to run mode.

2. General Electric Attack: A TCP replay attack is executed to place the

General Electric controller in program mode. The General Electric PLC remains

in program mode for ten seconds, halting execution of ladder logic. The General

Electric PLC is then set back to run mode.

Following the attack, the redundant controller (if available) will take over control

for the remainder of the simulation. Note that the Allen-Bradley attack is ineffective

on the General Electric PLC and vice versa.
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5.3.2 Experiment Factors.

Trials of the experiment will be defined by three factors which are summarized in

Table 2.

Table 2. Experiment factors.

Level 1 Level 2 Level 3

Redundancy

Strategy

HAD CAD HTR

Redundant

PLC

General Electric Allen-Bradley

Process

Tolerance

High Medium Low

• Redundancy Strategy: Redundancy strategy is varied to determine if the

active defense technique increases resiliency for hot and cold redundancy con-

figurations. Hot Active Defense (HAD) is a hot redundancy configuration that

implements the active defense technique. Cold Active Defense (CAD) is a cold

redundancy configuration that also implements the active defense technique.

Hot Traditional Redundancy (HTR) is a hot redundancy configuration that

does not implement the active defense technique (primary and secondary con-

troller are identical).

• Redundant PLC: The redundant PLC is varied to determine PLC brand

impacts the resiliency strategies’ performance.

• Process Tolerance: Different process tolerances are tested to understand the

impact tolerance has on the switchover speed necessary to avoid causing a bump
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in the process. High tolerance (level 1) corresponds to DO values changing at

a slow rate, as low tolerance (level 3) corresponds to DO values changing at a

fast rate. Since the simulation must run quickly to achieve multiple trials, the

high tolerance level represents approximately 1500 times the rate at which DO

would fall in an actual aeration basin.

All factor level combinations will be run through the aeration basin model thirty

times for a total of 540 trials. The python code that automates the experiment,

running all factor combinations through the simulation can be found is Appendix A,

Section 1.2.

5.3.3 Resiliency Metrics.

The resiliency metrics outlined in Zhu et al. [18] map well to the security score

factors outlined in Babineau et al. [2].

Deterrence is increased as the system’s protection time increases. Real-time de-

fense and restoration increase as identification time, recover time, degrading time

and performance degradation decrease. Due to these relationships, an active defense

and redundancy implementation that increases the system’s resiliency metrics also

improves the system’s ability to deter, defend and recover.

Resiliency is measured for each active defense and redundancy implementation.

Note that all times being measured are relative to the faster rate of the aeration basin.

• Protection Time: This criterion will not be measured in the experiment. The

experiment will assume the primary controller is exploited by a cyber attack.

However, if an attacker knows the ICS employs two different controllers, they

may be deterred from attempting the attack due to the increased complexity,

ultimately increasing the system’s protection time.
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• Degrading Time: Relative degrading time will be measured within the exper-

iment by tracking how long it takes to achieve performance degradation. The

time it takes to reach the minimum DO level within the aeration basin model

will determine degrading time.

• Identification Time: The proposed solution does not incorporate an attack

detection mechanism. Since attack detection is left for future work, identifica-

tion time will not be measured within the experiment.

• Recover Time: Recover time will be measured by timing how long the process

takes to return to steady state after the cyber attack occurs.

• Performance Degradation: Performance degradation will be measured by

observing the change in DO levels. Specifically, the deviation of DO values

from the set point during the experiment.

Figure 9 illustrates these measurements for a single trial.
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Figure 9. Measurement of resiliency metrics (DO levels in aeration basin).
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VI. Results

This section discusses the results of the experiment.

6.1 Redundancy Characteristics

The general characteristics of a redundant system are revisited to show that the

active defense technique’s design follows the suggestions provided in Section 4.1.

1. Complexity: The solution uses relays to accomplish switchover as well as to

silence the redundant PLC outputs. These devices are simple, requiring only a

digital control signal. No modifications were made to PLC hardware or modules

to accomplish switchover or cross loading.

2. Independence: The proposed redundancy implementation uses Allen-Bradley

and General Electric PLCs making it unlikely an identical cyber attack will be

successful against both PLCs.

3. Propagation: Switching over to the redundant PLC after a cyber attack occurs

silences the outputs of the corrupted primary PLC. This silencing of outputs

does not allow the corrupted PLC to affect the process.

4. Human: Since the solution is mainly implemented with hardware (relays and

wires), there is less risk of software bugs allowing the redundancy system to be

exploited and bypassed.

The proposed redundancy implementation adds independence and limits the prop-

agation of a cyber induced failure while avoiding complexity. Including this redun-

dancy implementation in the initial design of the of the ICS can help avoid common

cause failures and potentially increase the resiliency of the system.
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6.2 Hardware

While the primary PLC was controlling the process, the current coming out of

the relay controlling the redundant PLC’s outputs was zero mA, showing the relays

properly silenced the redundant PLC’s outputs. Current was again measured from the

redundant PLC’s outputs, but following a switchover. The current measured ranged

from 12-15 mA, which corresponds to a valve position of 60-80 within the aeration

basin model. These values were checked against the engineering workstation and are

correct, showing the redundant PLC’s outputs are active following a switchover.

DO measurements from both the General Electric and Allen-Bradley PLC were

taken to determine error between the controllers. On average, the GE PLC read the

DO value approximately 0.05 mg/L or 2.5 percent higher than the Allen-Bradley.

A difference of .05 mg/L in DO levels does not negatively effect the treatment of

wastewater.

A mean switchover speed of 13.06 ms with a standard deviation of 0.0047 was

recorded. This speed is approximately 10 ms slower than GE’s RX3I hot redundancy

module and 77 ms faster than Allen-Bradley’s 1756 hot redundancy module, making

this feasible for most applications.

6.3 Measuring Increased Resiliency

This section includes a discussion and analysis of each implementation’s (i.e.,

HAD, CAD and HTR) resiliency metrics.

6.3.1 HAD.

When the cyber attack was executed this implementation immediately switched

from the primary PLC to the hot redundant PLC of a different manufacturer. Since

the switchover took place within 13 ms and the redundant controller had knowledge of
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the process, the process experienced virtually no disturbance besides the measurement

error in DO (.05 mg/L). Any bump the process may have experienced was less than

error within experiment and could not be determined.

Figure 10 shows the DO levels of the process before and after the cyber attack

for all three implementations. Note that Figure 10 does not identify steady state or

switchover for HAD due to its nearly instantaneous switchover and lack of process

disturbance. In this trial, all three implementations are being controlled initially

by the Allen-Bradley PLC and establish a steady state DO level just below the 2.0

mg/L set point. The implementations do not maintain 2.0 mg/L set point due to

PLC calibration.

Figure 10. DO levels over time for all three implementations (GE redundant PLC and

medium process tolerance).

The HAD implementation shows virtually no process disruption following the

35



www.manaraa.com

cyber attack meaning the bacteria in the aeration basin are still removing the organic

matter effectively.

CAD shows a moderate disruption, but it maintains a high enough DO level and

recovers to steady state in a relatively short amount of time to still remove organic

matter from the water, just not optimally.

HTR shows a very large disruption as both the primary and redundant controller

were exploited by the cyber attack which lead to increased downtime. While organic

matter is still being removed from the water, the rate at which the removal is occur-

ring is significantly reduced, potentially leading to increased treatment times. If the

treatment time becomes too large (due to the low DO content), the aeration basin

can bottleneck the entire sewage treatment process, leading to back flow of sewage

into residential areas.

All three implementations eventually recover from the attack and establish a

steady state near the 2.0 mg/L set point. HAD and CAD are now using the re-

dundant GE PLC which measures the DO value approximately .05 mg/L higher than

the Allen-Bradley due to PLC calibration. For this reason, HAD and CAD estab-

lish their steady state slightly above the 2.0 mg/L set point. HTR’s redundant PLC

was identical to its primary PLC (Allen-Bradley), thus it established a steady state

slightly below the 2.0 mg/L set point (the same steady state value it established at

the beginning of the trial). Note that for HTR, the primary PLC is re-enabled to

function as the identical redundant PLC.

6.3.2 CAD.

The cyber attack scenario rendered the primary PLC unavailable causing the

redundant controller of a different manufacturer to boot up and take control. Since

the redundant controller was in a cold state, the process was uncontrolled for 5-8
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Table 3. Resiliency metrics for CAD by process tolerance.

Mean SD Min Max

High

Tolerance

DT 7.731 1.910 5.303 9.879

RT 94.600 21.260 51.480 101.500

PD 0.331 0.099 0.171 0.439

Medium

Tolerance

DT 7.694 1.969 5.327 9.919

RT 61.910 20.061 34.740 95.310

PD 0.628 0.216 0.282 0.848

Low

Tolerance

DT 7.680 1.968 5.305 9.938

RT 78.410 14.386 49.750 105.450

PD 1.277 0.385 0.527 1.677

seconds while the controller booted. Table 3 summarizes the resiliency metrics (e.g.,

degradation time (DT), recover time (RT) and performance degradation (PD)) for

the CAD implementation based on process tolerance where DT and RT are given in

seconds and PD is given in milligrams per liter (mg/L).

Due to the CAD implementation leaving the process uncontrolled while its re-

dundant PLC booted, the process tolerance level had a large impact on its resiliency

metrics. DO levels dropped approximately four times more for the low tolerance pro-

cess compared to the high tolerance process level. This larger drop in DO for the low

tolerance process level led to a slower recover time compared to the high tolerance

process as well.

For all process tolerance levels, the efficiency of organic matter decomposition

is reduced, with medium and low tolerances processes reaching DO values where

treatment begins to be ineffective.
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While the CAD did experience high levels of performance degradation, it can

still treat wastewater effectively if it recovers from the loss in DO quickly. However,

CAD’s ratio of degradation time to recover time (the time it took to lose the DO

compared to the time it took to regain the same amount of DO) is fairly low. It took

approximately 7-10 times longer to recover the DO than it did to lose it.

This long recover time is likely due to the cold redundancy configuration of the

PLCs. The redundant PLC’s PID takes time to learn how to return the process to

steady state. Due to the CAD’s high performance degradation and recover time for

processes with low and medium tolerance, the CAD implementation is likely only

feasible for highly tolerant processes.

6.3.3 HTR.

The cyber attack rendered the primary PLC inoperable bringing the identical re-

dundant controller online. However, the redundant controller was susceptible to the

same attack, thus the HTR implementation was unable to control the process for the

full ten seconds. Table 4 summarizes the resiliency metrics (e.g., degradation time

(DT), recover time (RT) and performance degradation (PD)) for the HTR implemen-

tation based on process tolerance where DT and RT are given in seconds (s) and PD

is given in milligrams per liter (mg/L).

For high tolerance, the HTR implementation likely continued to treat the water as

its DO dropped approximately 25 percent, staying above 1.5 mg/L, but its treatment

was likely not at an optimal rate. For both medium and low process tolerance,

HTR was likely incapable of treating water at a high enough rate to avoid causing

a bottleneck in the treatment process. Similar to CAD, HTR is only feasible for

systems with high tolerance to a lack of control. However, HTR’s resiliency metrics

are heavily dependent on the attack and the ICS personnel’s ability to troubleshoot,
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Table 4. Resiliency metrics for HTR by process tolerance.

Mean SD Min Max

High

Tolerance

DT 10.840 0.311 10.420 11.590

RT 81.070 17.969 62.618 109.580

PD 0.485 0.017 0.477 0.523

Medium

Tolerance

DT 11.020 .433 10.420 11.750

RT 81.620 5.966 70.980 89.550

PD 0.968 0.043 .933 1.021

Low

Tolerance

DT 10.710 0.116 10.410 10.970

RT 92.650 23.7519 68.090 123.96

PD 1.849 0.001 1.848 1.851

fix, or replace the exploited PLCs. Ten seconds was chosen as the relative duration

of the cyber attack, but an actual attack may cause more or less downtime and thus,

significantly more or less process disruption. The HTR implementation is at the

mercy of the attack and relies heavily on ICS personnel.

6.3.4 Comparing CAD and HTR.

CAD and HTR implementations are compared to show the potential increase in

resiliency provided by the active defense technique. Figures 11, 12 and 13 show how

resiliency metrics for CAD and HTR differed when using an Allen-Bradley primary

controller, General Electric redundant controller and medium tolerance process level.

Since the data was not normally distributed, a Mann-Whitney-Wilcoxon Test

was used to determine differences among the two implementation’s resiliency metrics.

Comparisons were made between the two implementations based on process tolerance
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Figure 11. Degradation time for CAD and HTR implementations (AB primary PLC,

GE redundant PLC with medium process tolerance).

level and the PLC serving as the redundant controller. All combinations of process

tolerance and redundant controllers for the two implementations showed a significant

difference (p < 0.05).

CAD had lower degradation time and performance degradation compared to HTR

for all process tolerance levels. For recover time, CAD recovered faster than HTR for

both low and medium tolerance, but recovered slower at high tolerance by approxi-

mately 13 seconds. In the high tolerance process, CAD and HTR experience small

drops in DO, with averages of 0.331 and 0.485 mg/L respectively. With the drop in

DO values between the implementations being small and fairly similar, the accuracy

with which the PLC’s PID can bring the process back to steady state has a large
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Figure 12. Recover time for CAD and HTR implementations (AB primary PLC, GE

redundant PLC with medium process tolerance).

impact on the recover time. This is not the case for low and medium tolerance levels

as HTR loses much more DO than CAD. Due to the large difference in the DO loss

for HTR and CAD, HTR recovers slower simply because it has more DO to regain.

With similar drops in DO for the high tolerance process, HTR is capable of recovering

faster due to its redundant PLC’s PID more accurately controlling the process than

CAD’s redundant PLC’s PID. HTR’s redundant PID is initially more accurate than

CAD’s redundant PID because it is identical to the primary PLC’s PID, avoiding

the problems discussed in Section 8.0. If CAD’s primary PLC and redundant PLC

PIDs were tuned identically, this difference in accuracy between HTR and CAD’s

redundant PIDs would likely not exist, allowing the CAD to recover faster for the
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Figure 13. Performance degradation for CAD and HTR implementations (AB primary

PLC, GE redundant PLC with medium process tolerance).

high tolerance process level.

While CAD did recover slower for a high tolerance process, it demonstrated im-

proved resiliency in all other metrics and process tolerance levels. With proper PID

tuning, it would likely recover faster than HTR at the high tolerance level as its

drop in DO level is not as large as HTR. The lower process disruption observed for

the CAD implementation compared to the HTR implementation demonstrates the

increase in resiliency the active defense technique can provide in a cyber attack sce-

nario. Increasing overall resiliency metrics increases the ICS’s ability to deter, defend

and restore.
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6.3.5 Observations.

Factors such as which PLC served as the redundant or primary controller and

the tolerance level of the process impacted resiliency metrics in all three redundancy

implementations.

6.3.5.1 Primary vs. Redundant Controller.

• HAD: Since the disruption in the process could not be detected for HAD, it is

difficult to determine if the redundant controller had an impact on its resiliency

metrics.

• CAD: All CAD’s resiliency metrics were impacted by which PLC served as

primary or redundant PLC. These impacts are likely due to the different boot

times of the PLCs. The process was uncontrolled for different amount of times

depending on which PLC was the redundant controller. This leads to differ-

ent minimum DO values, time to achieve that minimum DO value and time

to recover from that minimum DO value. The Allen-Bradley tended to boot

faster than the General Electric, thus the CAD implementation achieved better

resiliency metrics while the Allen-Bradley served as the redundant PLC. This

impact is shown in Figure 14 where recover time is plotted based on which PLC

was the redundant PLC.

• HTR:The controller that served as the primary or redundant PLC only affected

the recovery time. This is likely due to differences in the PIDs that control the

aeration basin’s valve to bring the process back to steady state. With the Allen-

Bradley serving as the redundant controller, the HTR implementation recovered

to steady state faster. If the General Electric’s PID was more finely tuned, it

would likely perform similarly to the Allen-Bradley PID.
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Figure 14. CAD recover time by redundant controller (medium process tolerance).

6.3.5.2 Process Tolerance.

As partially discussed, the process’s tolerance to a lack of control also impacted the

implementation’s resiliency metrics. It was expected that a process of high tolerance

would score better in performance degradation and recover time while degradation

time would remain constant regardless of process tolerance.

• HAD: Since the disruption in the process could not be detected for HAD, it

is difficult to determine if the process tolerance had an effect on its resiliency

metrics. However, since HAD experienced virtually no detectable process bump

at any tolerance level, it is possible switchover and cross loading occurred with

enough speed and accuracy for tolerance level to have no impact.
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• CAD: The performance degradation and degradation time were as expected,

but recover time was better for a process with medium tolerance when GE was

the redundant controller and low tolerance when Allen-Bradley was the redun-

dant controller. This is most likely due to the PID’s configuration that controls

the valves in the aeration basin. When GE was the redundant controller, its

PID was constantly overshooting the process set point at high tolerance while

at low tolerance, the process changed too rapidly making it difficult for the

PID to accurately control the process. The medium tolerance level provided

enough DO change for the PID to avoid overshooting the set point and a slow

enough rate of change that the PID’s outputs are timely allowing for accurate

control of the process. When Allen-Bradley was the redundant controller, its

PID happened to be tuned more accurately for the low tolerance process level,

thus it quickly returned to steady state at this tolerance level.

Figures 15, 16 and 17 show the impact process tolerance had on the resiliency

metrics for the CAD implementation with a AB primary PLC and an General-

Electric redundant PLC.

• HTR: Degradation time and performance degradation behaved as expected,

but recover time was nearly identical for high tolerance (81.070 s) and medium

tolerance levels (81.620 s). This is likely due to the same reasons the CAD

implementation recovered faster at a medium tolerance level when GE was the

redundant controller and lower tolerance level when the Allen-Bradley was the

redundant controller. HTR’s PIDs collectively performed more accurately at

the medium tolerance level, allowing HTR to recover in about the same time

as the high tolerance process level regardless of the larger drop in DO.

While process tolerance did largely impact resiliency metrics, tailoring the PLC’s

PID to perform optimally at a given tolerance level can mitigate the observed impacts.
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Figure 15. Degradation time by process tolerance (Allen-Bradley primary PLC, GE

redundant PLC).
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Figure 16. Recover time by process tolerance (Allen-Bradley primary PLC, GE redun-

dant PLC).
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Figure 17. Performance degradation by process tolerance (Allen-Bradley primary PLC,

GE redundant PLC).).
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VII. Future Work

The active defense technique increased the resiliency of the aeration basin model,

but it did so under the assumption that a cyber attack was already detected. An

understanding of how to identify cyber attacks on ICS must be developed before the

active defense technique should be considered feasible.

The active defense technique’s return on investment as a security strategy should

also be explored to determine its actual value in risk mitigation.

7.1 Identifying a Cyber Attack

A well-executed cyber attack may not be immediately apparent, thus the speed in

which a switchover occurs will ultimately be driven by the time it takes to detect the

cyber attack, not how fast the hardware can bring the redundant controller online.

A potential way to detect an attack is to look for abnormalities in process val-

ues. Engineers can use Shewhart control charts to identify variations in the process.

Variations are typically either common cause or special cause [12]. Common cause

variation refers to variation that is expected within the process where special cause

refers to variation that is caused by some event [12]. Developing an understanding

of both types of variations within the process leads to a more efficient process and

potentially larger profits. Watching process data for trends such as a constant in-

crease/decrease or consistent fluctuation above/below the set point can identify a

process that is out of control [12]. Identifying these trends early on can minimize the

damage caused by a loss of control. However, if the attacker is capable of causing the

process to go out of control while convincing the operator and control software that

the process is well within limits, detection may become even more difficult.
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7.2 Determining the Cost Effectiveness of Active Defense

Ultimately, the decision to employ the proposed active defense technique comes

down to its ability to mitigate risk to the ICS in an affordable manner. Security

managers and ICS stakeholders need to see an appropriate return on investment for

any security strategy. A risk assessment will help quantify the cost to secure the

process and this cost will vary based on the type of process. A special purpose device

could be designed to reduce implementation costs.
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VIII. Conclusion

Through the use of diverse primary and redundant PLCs, the active defense tech-

nique proposed in this research reduces the likelihood of a cyber attack common cause

failure. The active defense technique was shown to control an aeration basin with

minimal deviation from the set point during a cyber attack in hot and cold redun-

dancy configurations compared to a traditional redundancy approach. Due to the

decreased process disruption during a cyber attack, the resiliency of the ICS that

employed the active defense technique was improved. Improving resiliency through

diverse redundancy will help protect our critical infrastructure and perhaps reduce

disasters from common cause failures such as the fateful Challenger explosion. Note

that the views expressed in this paper are those of the authors and do not reflect

the official policy or position of the U.S. Air Force, U.S. Army, U.S. Department of

Defense or U.S. Government.
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Appendix A. Python Experiment Code

This code was used to run the aeration basin model. This code simulates the

aeration basin process and executes the experiment by automatically running trials

with different experiment factors.

1.1 Y-Box Simulation Code

This code simulates the aeration basin process.

import time

import Ybox

import math

import pygbutton

import csv

import sys

import so cke t

import s t r u c t

import os

import s t r i n g

import b i n a s c i i

from ENIP import ENIP

#

################################################################
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# Author : Evan Plumley and Andrew Chaves

#

# This program i s the comminication engine f o r the Y−box and

the GUI

# fo r monitor ing and powering the p h y s i c a l wastewater system

#

#

#

################################################################

#############################################

# Chaves I n i t i a l i z a t i o n Code

#AI 0

#DI 1

#AO 2

#DO 3

#Fan 1 (3 ,0)

#Fan 0 (3 ,1)

#Low Le f t (3 ,3) ORP

#High Le f t (2 ,1) ORP

#Low Right (3 ,5)
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#High Right (3 ,4)

#Top(3 ,6) )

#DO 5

#ORP 6

class WwtSim :

def i n i t ( s e l f ) :

s e l f . running = True

s e l f . ybox = Ybox . Ybox ( )

#I n i t i a l i z e D i s so l v ed Oxygen and ORP and send to PLC

DO=2.0

ORP=−20.0

#Convert ORP (−50 to +50 s c a l e ) to something the ybox can use

(0−4095)

ORP=ORP+150.0

#I n i t i a l Valve Pos i t i on s

Aerobic Valve =50.0

Anaerobic Valve=50.0
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#Sca le f o r sending DO ( Converts 0−7 and 0−100) to ybox va l u e s

Scale DO=math . c e i l ( 4 0 95 . 0 / 7 . 0 )

Scale ORP=math . c e i l ( 4095 . 0/700 . 0 )

Sca l e Va lve s=math . c e i l ( 4095 . 0/100 . 0 )

#Sca l e s and ca s t s as an i n t DO, ORP, and Valves

Send DO=int (DO∗Scale DO )

Send ORP=int (ORP∗Scale ORP )

Send Aerobic Valve=Sca l e Va lve s ∗Aerobic Valve

Send Anaerobic Valve=Sca l e Va lve s ∗Anaerobic Valve

Fan 1=0

Fan 2=0

#Let i t f l y

s e l f . ybox . sendAnWrite (2 , 0 , Send DO)

s e l f . ybox . sendAnWrite (2 , 1 , Send ORP)

s e l f . ybox . sendAnWrite (2 , 5 , Send DO)

s e l f . ybox . sendAnWrite (2 , 7 , Send ORP)

s e l f . ybox . sendAnWrite (2 , 2 , Send Aerobic Valve )

s e l f . ybox . sendAnWrite (2 , 3 , Send Anaerobic Valve )

s e l f . ybox . sendWrite (3 , 0 , Fan 1 )

s e l f . ybox . sendWrite (3 , 1 , Fan 2 )

s e l f . ybox . sendWrite (3 , 2 , 0 )

s e l f . ybox . sendWrite (3 , 3 , 0 )

s e l f . ybox . sendWrite (3 , 4 , 0 )
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s e l f . ybox . sendWrite (3 , 5 , 0 )

s e l f . ybox . sendWrite (3 , 6 , 0 )

s e l f . ybox . sendWrite (3 , 8 , 1 )

s e l f . ybox . sendWrite (3 , 9 , 1 )

#What are we sending to the YBOX?

print ( ’ DO In i t i a l : ’ , Send DO)

print ( ’ \nORP Init ia l : ’ , Send ORP)

print ( ’ \ nSend Ae r ob i c Va l v e In i t i a l : ’ , Send Aerobic Valve )

print ( ’ \ nSend Anaerob i c Va lve In i t i a l : ’ ,

Send Anaerobic Valve )

#Te l l the i n f i n i t e loop be low what the i n t i a l i z e d va l u e s are

. . . ( Set them as the s t a r t i n g va l u e s )

s e l f . In i t i a l DO=Send DO

s e l f . In i t ia l ORP=Send ORP

In i t i a l A e r o b i c Va l v e=Send Aerobic Valve

In i t i a l Ana e r ob i c Va l v e=Send Anaerobic Valve

#method to monitor the PLC and chnage the d i s p l a y accord ing l y

def timedReads ( s e l f , Slope Up , Slope Down , Fai lure Time ,

Run Time , PLC, Single Mode , Of f l ine Time , Cold Redundancy )
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:

######NORMAL TIMED READS########

past = int (round( time . time ( ) ∗ 1000) ) #g e t t i n g s t a r t i n g

mi l i second time to execu te reads from the ybox

low=0

medium=0

high=0

i f Slope Up==.113:

low=Slope Up

e l i f Slope Up==.225:

medium=Slope Up

e l i f Slope Up==.45:

high=Slope Up

i f Cold Redundancy==1 and PLC== 0 and Slope Up== low :

with open ( ’ AB Cold Start Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC == 1 and Slope Up== low :

with open ( ’ GE Cold Start Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 0 and Slope Up== low :

with open ( ’ AB Single Mode Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC == 1 and Slope Up== low :

with open ( ’ GE Single Mode Low . csv ’ , ’ a ’ ) as outputs :
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outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC == 1 and Slope Up== low :

with open ( ’ Dual Mode GE First Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC == 0 and Slope Up== low :

with open ( ’ Dual Mode AB First Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

61



www.manaraa.com

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

i f Cold Redundancy==1 and PLC== 0 and Slope Up== medium :

with open ( ’ AB Cold Start Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC == 1 and Slope Up== medium :

with open ( ’ GE Cold Start Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )
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e l i f Single Mode==1 and PLC== 0 and Slope Up== medium :

with open ( ’ AB Single Mode Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC == 1 and Slope Up== medium :

with open ( ’ GE Single Mode Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC == 1 and Slope Up== medium :

with open ( ’ Dual Mode GE First Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC == 0 and Slope Up== medium :

with open ( ’ Dual Mode AB First Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC== 0 and Slope Up== high :

with open ( ’ AB Cold Start High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )
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outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC == 1 and Slope Up== high :

with open ( ’ GE Cold Start High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 0 and Slope Up== high :

with open ( ’ AB Single Mode High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC == 1 and Slope Up== high :

with open ( ’ GE Single Mode High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )
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outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC == 1 and Slope Up== high :

with open ( ’ Dual Mode GE First High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC == 0 and Slope Up== high :

with open ( ’ Dual Mode AB First High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ time ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’DO’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Valve ’ ) )

outputs . wr i t e ( ’ , ’ )

66



www.manaraa.com

outputs . wr i t e ( str ( ’VFD’ ) )

outputs . wr i t e ( ’ \n ’ )

i f PLC==1:

s e l f . ybox . sendWrite (3 , 7 , 1 )

else :

s e l f . ybox . sendWrite (3 , 7 , 0 )

#i f PLC==0 and Cold Redundancy==1:

# s e l f . ybox . sendWrite (3 ,8 ,1)

# s e l f . ybox . sendWrite (3 ,9 ,0)

#i f PLC==1 and Cold Redundancy==1:

# s e l f . ybox . sendWrite (3 ,9 ,1)

# s e l f . ybox . sendWrite (3 ,8 ,0)

DEBUG=False

f a i l b i t =0

f a i l b i t 2=0

f a i l b i t 3=0

f a i l b i t 4=0

f a i l b i t 5=0

Run Time=time . time ( ) + Run Time

Fai lure Time=time . time ( ) + Fai lure Time

Of f l ine Time=Fai lure Time + Of f l ine Time

while True :
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pre sent = int (round( time . time ( ) ∗ 1000) ) #g e t t i n g pre s en t

time to comapre to pas t

#check to see i f 100 m i l l i s e c o n d s have passed

p r e s e n t d i s p l a y=time . time ( )

time show=time . c l o ck ( )

i f pre sent − past >= 100 :

past = pre sent

#Read the output (%) o f the PIDs c o n t r o l l i n g the VFD and

Valves

Valve Aerobic Percent Output=s e l f . ybox . sendRead (0 , 0 ) #va l v e

percenatge

Valve Anaerobic Percent Output=s e l f . ybox . sendRead (0 , 1 )

Frequency Percent Increase=s e l f . ybox . sendRead (0 , 2 )

#Sca le v a l v e s and VFD speed va l u e s to 0−100, why i s i t 200?

z e r o t o hun s c a l e =100/4095

Frequency Sca le =60/4095#100/4095

#Use the Sca le

##############################################

#Disp lay Frequecny sent to the VFP from the PLC

##############################################

Frequency Per cent Inc r ea se Sca l ed=(Frequency Percent Increase

∗Frequency Sca le ) #0−60
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print ( ”PLC Freq\n” , Frequency Percent Increase )

###################################

#Disp lay Aerobic Valve updates

##################################

Valve Aerob ic Percent Output Sca led=int (

Valve Aerobic Percent Output ∗ z e r o t o hun s c a l e ) # Aerobic

v a l v e open percentage

###################################

#Disp lay Anerobic Valve updates

##################################

Valve Anaerob ic Percent Output Sca led=int (

Valve Anaerobic Percent Output∗ z e r o t o hun s c a l e )# =

Anerobic v a l v e open perce tage

####################

####################

####################

###########################

#Output to v a l v e s

Aerob i c Va lve Sca l ed D i sp l ay=Valve Aerobic Percent Output

Anaerob ic Va lve Sca led Disp lay=Valve Anaerobic Percent Output
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s e l f . ybox . sendAnWrite (2 , 3 , Aerob i c Va lve Sca l ed D i sp l ay )

s e l f . ybox . sendAnWrite (2 , 4 , Anaerob ic Va lve Sca led Disp lay )

################Decrease DO AND ORP#################

#Sub t rac t percentage o f v a l v e s from 100 and use t h a t to

determine how much to lower DO and ORP

#The more anaerob ic the water , the lower ORP and DO both are

DO Subtract=(101−Valve Aerob ic Percent Output Sca led )

ORP Subtract=(101−Valve Anaerob ic Percent Output Sca led )

#Sub t rac t the v a l u e s and d i v i d e by two to make the change

l e s s a g r e s s i v e ( h e l p s the PIDs)

DO Update=int ( s e l f . In i t ia l DO −(DO Subtract ∗Slope Down ) )

ORP Update=int ( s e l f . In i t ia l ORP−(ORP Subtract∗Slope Down ) )

DO Update Display=DO Update/585

#Update the prev i ous oxygen va lue so next time through the

loop we are s u b t r a c t i n g from the most r e cen t c o r r e c t va lue

s e l f . In i t i a l DO=DO Update

s e l f . In i t ia l ORP=ORP Update
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##############GET VFD TRUE SPEED ##################

#Get the VFD’ s d i r e c t output from the Ybox f o r i t s speed NOTE

: the VFD must be running ! ! ! ! , not j u s t on ! ! !

True Frequency=s e l f . ybox . sendRead (0 , 2 )

#Convert the s i g n a l to 0−60 he r t z

True Frequency Sca led=True Frequency ∗(60/4095)

#Mul t i p l y the v a l v e percentage by a s lope , add t h i s va lue to

prev i ous DO and ORP va l u e s

DO Update=s e l f . In i t i a l DO+(Slope Up∗

Valve Aerob ic Percent Output Sca led )

ORP Update=s e l f . In i t ia l ORP+(Slope Up∗

Valve Anaerob ic Percent Output Sca led )

################INCREASE DO AND ORP#################

#Increase DO and ORP i f v a l v e s are opening accord ing to

equat ion
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#Update the prev i ous DO and ORP va l u e s so next time through

the loop we are adding to the co r r e c t va lue

s e l f . In i t i a l DO=DO Update

s e l f . In i t ia l ORP=ORP Update

#Cast as an i n t e g e r f o r the YBOX’ s sake

DO Update=int (DO Update )

ORP Update=int (ORP Update )

#Show what i s be ing sent

print ( ’ \nDO Update : ’ , DO Update )

print ( ’ \nORP Update : ’ , ORP Update )

#l e t DO and ORP f l y

s e l f . ybox . sendAnWrite (2 , 0 ,DO Update )

s e l f . ybox . sendAnWrite (2 , 1 ,ORP Update )

s e l f . ybox . sendAnWrite (2 , 5 ,DO Update )

s e l f . ybox . sendAnWrite (2 , 7 ,ORP Update )

i f Cold Redundancy==1 and PLC== 0 and Slope Up== low :

with open ( ’ AB Cold Start Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )
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outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC == 1 and Slope Up== low :

with open ( ’ GE Cold Start Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 0 and Slope Up== low :

with open ( ’ AB Single Mode Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )
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outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 1 and Slope Up== low :

with open ( ’ GE Single Mode Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC== 0 and Slope Up== low :

with open ( ’ Dual Mode AB First Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC== 1 and Slope Up== low :

with open ( ’ Dual Mode GE First Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC== 0 and Slope Up== medium :

with open ( ’ AB Cold Start Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC == 1 and Slope Up== medium :

with open ( ’ GE Cold Start Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )
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outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 0 and Slope Up== medium :

with open ( ’ AB Single Mode Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 1 and Slope Up== medium :

with open ( ’ GE Single Mode Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC== 0 and Slope Up== medium :

with open ( ’ Dual Mode AB First Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC== 1 and Slope Up== medium :

with open ( ’ Dual Mode GE First Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC== 0 and Slope Up== high :

with open ( ’ AB Cold Start High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Cold Redundancy==1 and PLC == 1 and Slope Up== high :

with open ( ’ GE Cold Start High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 0 and Slope Up== high :

with open ( ’ AB Single Mode High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==1 and PLC== 1 and Slope Up== high :

with open ( ’ GE Single Mode High . csv ’ , ’ a ’ ) as outputs :
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outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC== 0 and Slope Up== high :

with open ( ’ Dual Mode AB First High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

e l i f Single Mode==0 and PLC== 1 and Slope Up== high :

with open ( ’ Dual Mode GE First High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( time show ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( DO Update Display ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( Va lve Aerob ic Percent Output Sca led ) )

79



www.manaraa.com

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( True Frequency Sca led ) )

outputs . wr i t e ( ’ \n ’ )

print ( ”True Frequency Raw” , True Frequency )

#Print the t rue VFD frequency

print ( ’ \nTrue VFD Frequency : ’ , True Frequency Sca led )

#Sta r t fans i f the VFD i s runnning

i f True Frequency Sca led > 5 :

s e l f . ybox . sendWrite (3 , 0 , 1 )

s e l f . ybox . sendWrite (3 , 1 , 1 )

else :

s e l f . ybox . sendWrite (3 , 0 , 0 )

s e l f . ybox . sendWrite (3 , 1 , 0 )

#Print d i v i d e r f o r next time through loop
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print ( ’######################################\n ’ )

#########Obtain Alarms , check alarms , send to l i g h t i f

necessary######

DO High=s e l f . ybox . sendRead (1 , 0 )

i f DO High==1:

s e l f . ybox . sendWrite (3 , 5 , 1 )

else :

s e l f . ybox . sendWrite (3 , 5 , 0 )

DO Low=s e l f . ybox . sendRead (1 , 1 )

i f DO Low==1:

s e l f . ybox . sendWrite (3 , 4 , 1 )

else :

s e l f . ybox . sendWrite (3 , 4 , 0 )

ORP High=s e l f . ybox . sendRead (1 , 5 )

i f ORP High==1:

s e l f . ybox . sendWrite (3 , 2 , 1 )

else :

s e l f . ybox . sendWrite (3 , 2 , 0 )

ORP Low=s e l f . ybox . sendRead (1 , 3 )

i f ORP Low==1:
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s e l f . ybox . sendWrite (3 , 3 , 1 )

else :

s e l f . ybox . sendWrite (3 , 3 , 0 )

i f p r e s en t d i sp l a y>Fai lure Time :

i f f a i l b i t==0 and Single Mode==1 and PLC== 0 and

Cold Redundancy==0 and Slope Up==low :

with open ( ’ AB Single Mode Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==1 and PLC== 1 and

Cold Redundancy==0 and Slope Up==low :

with open ( ’ GE Single Mode Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )
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outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 0 and

Cold Redundancy==0 and Slope Up==low :

with open ( ’ Dual Mode AB First Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 1 and

Cold Redundancy==0 and Slope Up==low :

with open ( ’ Dual Mode GE First Low . csv ’ , ’ a ’ ) as outputs :
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outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 1 and

Cold Redundancy==1 and Slope Up==low :

with open ( ’ GE Cold Start Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1
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i f f a i l b i t==0 and Single Mode==0 and PLC== 0 and

Cold Redundancy==1 and Slope Up==low :

with open ( ’ AB Cold Start Low . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==1 and PLC== 0 and

Cold Redundancy==0 and Slope Up==medium :

with open ( ’ AB Single Mode Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )
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outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==1 and PLC== 1 and

Cold Redundancy==0 and Slope Up==medium :

with open ( ’ GE Single Mode Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 0 and

Cold Redundancy==0 and Slope Up==medium :

with open ( ’ Dual Mode AB First Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 1 and

Cold Redundancy==0 and Slope Up==medium :

with open ( ’ Dual Mode GE First Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 1 and

Cold Redundancy==1 and Slope Up==medium :

with open ( ’ GE Cold Start Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )
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outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 0 and

Cold Redundancy==1 and Slope Up==medium :

with open ( ’ AB Cold Start Medium . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==1 and PLC== 0 and

Cold Redundancy==0 and Slope Up==high :
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with open ( ’ AB Single Mode High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==1 and PLC== 1 and

Cold Redundancy==0 and Slope Up==high :

with open ( ’ GE Single Mode High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1
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i f f a i l b i t==0 and Single Mode==0 and PLC== 0 and

Cold Redundancy==0 and Slope Up==high :

with open ( ’ Dual Mode AB First High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 1 and

Cold Redundancy==0 and Slope Up==high :

with open ( ’ Dual Mode GE First High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )
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f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 1 and

Cold Redundancy==1 and Slope Up==high :

with open ( ’ GE Cold Start High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f f a i l b i t==0 and Single Mode==0 and PLC== 0 and

Cold Redundancy==1 and Slope Up==high :

with open ( ’ AB Cold Start High . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )

outputs . wr i t e ( ’ , ’ )

outputs . wr i t e ( str ( ’ Fa i l / Switch ’ ) )
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outputs . wr i t e ( ’ \n ’ )

f a i l b i t =1

i f Single Mode==1 and f a i l b i t 2 ==0:

####################GE DISABLE################

#Disab l e GE PLC

packet s = [ ]

with open ( ’ d i s a b l e p a c k e t s . txt ’ , ’ r ’ ) as inp :

for l i n e in inp :

l i = l i n e . s t r i p ( )

l i = b i n a s c i i . unhex l i f y ( l i )

packet s . append ( l i )

i f not DEBUG:

sock = socke t . so cke t ( so cke t .AF INET , socke t .SOCK STREAM)

sock . connect ( ( ’ 192 . 168 . 108 . 208 ’ , 18245) )

for p in packet s :

i f not DEBUG:

sock . send (p)

time . s l e ep ( 0 . 0 0 1 )

else :

print ( b i n a s c i i . h e x l i f y ( l i ) )
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#pr in t sock . recv (1000) . encode ( ’ hex ’ )

#time . s l e e p (0 .05 )

#####################AB DISABLE#################

e = ENIP( )

e . connect ( ’ 192 . 168 . 108 . 210 ’ , 44818 , 1)

e . setToProg ( )

#e . setToRun ()

e . c l o s e ( )

f a i l b i t 2=1

i f p r e s e n t d i s p l a y > Off l ine Time and f a i l b i t 2==1 and

f a i l b i t 3 ==0:

######################GE ENABLE######################

packet s = [ ]

with open ( ’ enab l e packe t s . txt ’ , ’ r ’ ) as inp :

for l i n e in inp :

l i = l i n e . s t r i p ( )

l i = b i n a s c i i . unhex l i f y ( l i )

packet s . append ( l i )
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i f not DEBUG:

sock = socke t . so cke t ( so cke t .AF INET , socke t .SOCK STREAM)

sock . connect ( ( ’ 192 . 168 . 108 . 208 ’ , 18245) )

for p in packet s :

i f not DEBUG:

sock . send (p)

time . s l e ep ( 0 . 0 0 1 )

else :

print ( b i n a s c i i . h e x l i f y ( l i ) )

#pr in t sock . recv (1000) . encode ( ’ hex ’ )

#time . s l e e p (0 .05 )

########################AB ENABLE####################

e = ENIP( )

e . connect ( ’ 192 . 168 . 108 . 210 ’ , 44818 , 1)

#e . setToProg ()

e . setToRun ( )

e . c l o s e ( )

f a i l b i t 3=1
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i f PLC==0 and Single Mode==0 and Cold Redundancy==0 and

f a i l b i t 4 ==0:

#Disab l e AB

e = ENIP( )

e . connect ( ’ 192 . 168 . 108 . 210 ’ , 44818 , 1)

e . setToProg ( )

#e . setToRun ()

e . c l o s e ( )

f a i l b i t 4=1

#Switch to GE

s e l f . ybox . sendWrite (3 , 7 , 1 )

i f PLC==1 and Single Mode==0 and Cold Redundancy==0 and

f a i l b i t 4 ==0:

#Disab l e GE PLC
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packet s = [ ]

with open ( ’ d i s a b l e p a c k e t s . txt ’ , ’ r ’ ) as inp :

for l i n e in inp :

l i = l i n e . s t r i p ( )

l i = b i n a s c i i . unhex l i f y ( l i )

packet s . append ( l i )

i f not DEBUG:

sock = socke t . so cke t ( so cke t .AF INET , socke t .SOCK STREAM)

sock . connect ( ( ’ 192 . 168 . 108 . 208 ’ , 18245) )

for p in packet s :

i f not DEBUG:

sock . send (p)

time . s l e ep ( 0 . 0 0 1 )

else :

print ( b i n a s c i i . h e x l i f y ( l i ) )

#pr in t sock . recv (1000) . encode ( ’ hex ’ )

#time . s l e e p (0 .05 )

sock . c l o s e ( )

#Switch to AB

s e l f . ybox . sendWrite (3 , 7 , 0 )

f a i l b i t 4=1
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i f Cold Redundancy==1 and PLC==0 and f a i l b i t 5 ==0:

#Turn Off GE

s e l f . ybox . sendWrite (3 , 9 , 0 )

#Sleep

time . s l e ep ( 2 . 5 )

#Disab l e AB

e = ENIP( )

e . connect ( ’ 192 . 168 . 108 . 210 ’ , 44818 , 1)

e . setToProg ( )

#e . setToRun ()

e . c l o s e ( )

#Switch to GE

s e l f . ybox . sendWrite (3 , 7 , 1 )

#Boot up GE

s e l f . ybox . sendWrite (3 , 9 , 1 )

f a i l b i t 5=1

i f Cold Redundancy==1 and PLC==1 and f a i l b i t 5 ==0:
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s e l f . ybox . sendWrite (3 , 8 , 0 )

#Sleep

time . s l e ep ( 2 . 5 )

packet s = [ ]

with open ( ’ d i s a b l e p a c k e t s . txt ’ , ’ r ’ ) as inp :

for l i n e in inp :

l i = l i n e . s t r i p ( )

l i = b i n a s c i i . unhex l i f y ( l i )

packet s . append ( l i )

i f not DEBUG:

sock = socke t . so cke t ( so cke t .AF INET , socke t .SOCK STREAM)

sock . connect ( ( ’ 192 . 168 . 108 . 208 ’ , 18245) )

for p in packet s :

i f not DEBUG:

sock . send (p)

time . s l e ep ( 0 . 0 0 1 )

else :

print ( b i n a s c i i . h e x l i f y ( l i ) )

#pr in t sock . recv (1000) . encode ( ’ hex ’ )
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#time . s l e e p (0 .05 )

s e l f . ybox . sendWrite (3 , 7 , 0 )

s e l f . ybox . sendWrite (3 , 8 , 1 )

sock . c l o s e ( )

f a i l b i t 5=1

i f p r e s en t d i sp l a y>Run Time :

break

#Close the s e r i a l connect ion here

#s e l f . ybox . c l o s e ()

#wwtSim = WwtSim()

def I n i t 2 ( s e l f ) :

DEBUG=False

DO=2.0

ORP=−20.0

#Convert ORP (−50 to +50 s c a l e ) to something the ybox can use

(0−4095)

ORP=ORP+150.0

#I n i t i a l Valve Pos i t i on s

Aerobic Valve =50.0

Anaerobic Valve=50.0
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#Sca le f o r sending DO ( Converts 0−7 and 0−100) to ybox va l u e s

Scale DO=math . c e i l ( 4 0 95 . 0 / 7 . 0 )

Scale ORP=math . c e i l ( 4095 . 0/700 . 0 )

Sca l e Va lve s=math . c e i l ( 4095 . 0/100 . 0 )

#Sca l e s and ca s t s as an i n t DO, ORP, and Valves

Send DO=int (DO∗Scale DO )

Send ORP=int (ORP∗Scale ORP )

Send Aerobic Valve=Sca l e Va lve s ∗Aerobic Valve

Send Anaerobic Valve=Sca l e Va lve s ∗Anaerobic Valve

Fan 1=0

Fan 2=0

#Let i t f l y

s e l f . ybox . sendAnWrite (2 , 0 , Send DO)

s e l f . ybox . sendAnWrite (2 , 1 , Send ORP)

s e l f . ybox . sendAnWrite (2 , 5 , Send DO)

s e l f . ybox . sendAnWrite (2 , 7 , Send ORP)

s e l f . ybox . sendAnWrite (2 , 2 , Send Aerobic Valve )

s e l f . ybox . sendAnWrite (2 , 3 , Send Anaerobic Valve )

s e l f . ybox . sendWrite (3 , 0 , Fan 1 )

s e l f . ybox . sendWrite (3 , 1 , Fan 2 )

s e l f . ybox . sendWrite (3 , 2 , 0 )

s e l f . ybox . sendWrite (3 , 3 , 0 )
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s e l f . ybox . sendWrite (3 , 4 , 0 )

s e l f . ybox . sendWrite (3 , 5 , 0 )

s e l f . ybox . sendWrite (3 , 6 , 0 )

s e l f . ybox . sendWrite (3 , 8 , 1 )

s e l f . ybox . sendWrite (3 , 9 , 1 )

#What are we sending to the YBOX?

print ( ’ DO In i t i a l : ’ , Send DO)

print ( ’ \nORP Init ia l : ’ , Send ORP)

print ( ’ \ nSend Ae r ob i c Va l v e In i t i a l : ’ , Send Aerobic Valve )

print ( ’ \ nSend Anaerob i c Va lve In i t i a l : ’ ,

Send Anaerobic Valve )

#Te l l the i n f i n i t e loop be low what the i n t i a l i z e d va l u e s are

. . . ( Set them as the s t a r t i n g va l u e s )

s e l f . In i t i a l DO=Send DO

s e l f . In i t ia l ORP=Send ORP

In i t i a l A e r o b i c Va l v e=Send Aerobic Valve

In i t i a l Ana e r ob i c Va l v e=Send Anaerobic Valve

#Disab l e GE

packet s = [ ]

with open ( ’ d i s a b l e p a c k e t s . txt ’ , ’ r ’ ) as inp :
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for l i n e in inp :

l i = l i n e . s t r i p ( )

l i = b i n a s c i i . unhex l i f y ( l i )

packet s . append ( l i )

i f not DEBUG:

sock = socke t . so cke t ( so cke t .AF INET , socke t .SOCK STREAM)

sock . connect ( ( ’ 192 . 168 . 108 . 208 ’ , 18245) )

print ( ” here ” )

for p in packet s :

i f not DEBUG:

sock . send (p)

time . s l e ep ( 0 . 0 0 1 )

else :

print ( b i n a s c i i . h e x l i f y ( l i ) )

#pr in t sock . recv (1000) . encode ( ’ hex ’ )

#time . s l e e p (0 .05 )

time . s l e ep (2 )

#Enable GE

packet s = [ ]

with open ( ’ enab l e packe t s . txt ’ , ’ r ’ ) as inp :

for l i n e in inp :

l i = l i n e . s t r i p ( )

l i = b i n a s c i i . unhex l i f y ( l i )
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packet s . append ( l i )

i f not DEBUG:

sock = socke t . so cke t ( so cke t .AF INET , socke t .SOCK STREAM)

sock . connect ( ( ’ 192 . 168 . 108 . 208 ’ , 18245) )

print ( ” here ” )

for p in packet s :

i f not DEBUG:

sock . send (p)

time . s l e ep ( 0 . 0 0 1 )

else :

print ( b i n a s c i i . h e x l i f y ( l i ) )

#pr in t sock . recv (1000) . encode ( ’ hex ’ )

#time . s l e e p (0 .05 )

#Disab l e AB

e = ENIP( )

e . connect ( ’ 192 . 168 . 108 . 210 ’ , 44818 , 1)

e . setToProg ( )

#e . setToRun ()

e . c l o s e ( )

time . s l e ep (2 )
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#Enable AB

e = ENIP( )

e . connect ( ’ 192 . 168 . 108 . 210 ’ , 44818 , 1)

#e . setToProg ()

e . setToRun ( )

e . c l o s e ( )

1.2 Experiment Automation Script

This code runs the experiment, running trials defined by different experiment

factors.

import time

import msvcrt

from pygame . locals import ∗

import s e r i a l

import csv

import Main High Speed Three Disable

import Ybox

import s t r i n g

#

########################################################################

# Author : Evan Plumley and Andrew Chaves

# Date : 6/20/2016
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# vers i on : 1 .0

#

#The Sc r i p t Ca l l e r c l a s s

# dependencies : pygame , p y s e r i a l

#

########################################################################

def c a l l ( ) :

#GE=1

#AB=0

#de f timedReads ( s e l f , Slope Up , Slope Down , Fai lure Time ,

Run Time , PLC, Single Mode , Of f l ine Time , Cold Redundancy )

:

thang = Main High Speed Three Disable .WwtSim( )

with open ( ’ Experiment Inputs . txt ’ , ’ r ’ ) as inp :

for l i n e in inp :

l i = l i n e . s t r i p ( )

s p l i t=l i . s p l i t ( ” ” )

print ( str ( s p l i t ) )

cu r r en t t ime=time . c l o ck ( )

with open ( ’ Exper iment Inputs Track . txt ’ , ’ a ’ ) as out :

out . wr i t e ( str ( s p l i t ) )

out . wr i t e ( str ( ’ ’ ) )
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out . wr i t e ( str ( cu r r en t t ime ) )

out . wr i t e ( ’ \n ’ )

Main High Speed Three Disable . I n i t 2 ( thang )

Main High Speed Three Disable . timedReads ( thang , f loat ( s p l i t

[ 0 ] ) , f loat ( s p l i t [ 1 ] ) , f loat ( s p l i t [ 2 ] ) , int ( s p l i t [ 3 ] ) , int (

s p l i t [ 4 ] ) , int ( s p l i t [ 5 ] ) , int ( s p l i t [ 6 ] ) , int ( s p l i t [ 7 ] ) )

#de f timedReads ( s e l f , Slope Up , Slope Down , Fai lure Time ,

Run Time , PLC, Single Mode , Of f l ine Time , Cold Redundancy )

:

#Main High Speed Three . I n i t 2 ( thang )

#Main High Speed Three . timedReads ( thang

, . 075 , . 1 , 25 ,60 ,1 , 1 , 10 ,0 )

c a l l ( )

1.3 Switchover Speed Test

import time

import Ybox

import math

import pygbutton

import csv

import sys

import so cke t
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import s t r u c t

import os

import s t r i n g

import b i n a s c i i

from ENIP import ENIP

#

################################################################

# Author : Evan Plumley and Andrew Chaves

#

# This program i s the comminication engine f o r the Y−box and

the GUI

# fo r monitor ing and powering the p h y s i c a l wastewater system

#

#

#

################################################################

#############################################

# Chaves I n i t i a l i z a t i o n Code
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#AI 0

#DI 1

#AO 2

#DO 3

#Fan 1 (3 ,0)

#Fan 0 (3 ,1)

#Low Le f t (3 ,3) ORP

#High Le f t (2 ,1) ORP

#Low Right (3 ,5)

#High Right (3 ,4)

#Top(3 ,6) )

#DO 5

#ORP 6

class WwtSim :

def i n i t ( s e l f ) :

s e l f . running = True

s e l f . ybox = Ybox . Ybox ( )

def t iming ( s e l f ) :

i=0

while i <=30:
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Switch=0

s e l f . ybox . sendWrite (3 , 7 , 1 )

s t a r t=time . time ( )

s e l f . ybox . sendWrite (3 , 7 , 0 )

while Switch !=1:

Switch=s e l f . ybox . sendRead (1 , 3 )

stop=time . time ( )

d i f f e r e n c e=stop−s t a r t

print ( s t a r t )

print ( stop )

print ( d i f f e r e n c e )

with open ( ’ Timing . csv ’ , ’ a ’ ) as outputs :

outputs . wr i t e ( str ( d i f f e r e n c e ) )

outputs . wr i t e ( ’ \n ’ )

i=i+1

andrew=WwtSim( )

andrew . t iming ( )
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Appendix B. Allen-Bradley Ladder Logic

This logic is executed on the Allen-Bradley PLC, allowing it to control the aeration

basin.

0DLQ5RXWLQH���/DGGHU�'LDJUDP �3DJH��
6HZDJH�0DLQ7DVN�0DLQ3URJUDP ������������������$0
7RWDO�QXPEHU�RI�UXQJV�LQ�URXWLQH��� &�?56/RJL[�����?3URMHFWV?6HZDJHB7UHDWPHQW?6HZDJHB$%B*(B1(:B3,'B6SHHG�$&'

56/RJL[�����

� -XPS�7R�6XEURXWLQH
5RXWLQH�1DPH '2B&RQWURO

-65

� -XPS�7R�6XEURXWLQH
5RXWLQH�1DPH 253B&RQWURO

-65

� -XPS�7R�6XEURXWLQH
5RXWLQH�1DPH %ORZHUB&RQWURO

-65

� -XPS�7R�6XEURXWLQH
5RXWLQH�1DPH $ODUPV

-65

�(QG�

Figure 18. Main-calls all sub-functions for aeration basin.
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$ODUPV���/DGGHU�'LDJUDP �3DJH��
6HZDJH�0DLQ7DVN�0DLQ3URJUDP ������������������$0
7RWDO�QXPEHU�RI�UXQJV�LQ�URXWLQH��� &�?56/RJL[�����?3URMHFWV?6HZDJHB7UHDWPHQW?6HZDJHB$%B*(B1(:B3,'B6SHHG�$&'

56/RJL[�����

� /HVV�7KDQ��$�%�
6RXUFH�$ 'LVVROYHGB2[\JHQ
� ���������
6RXUFH�% '2B/RZ
� ���

/(6 /RFDO���2�'DWD��

� *UHDWHU�7KDQ��$!%�
6RXUFH�$ 253
� ����������
6RXUFH�% 253B+LJK
� �����

*57 /RFDO���2�'DWD��

�(QG�

Figure 19. Alarms-sounds alarms if DO or ORP drop below or go above set point.
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%ORZHUB&RQWURO���/DGGHU�'LDJUDP �3DJH��
6HZDJH�0DLQ7DVN�0DLQ3URJUDP ������������������$0
7RWDO�QXPEHU�RI�UXQJV�LQ�URXWLQH��� &�?56/RJL[�����?3URMHFWV?6HZDJHB7UHDWPHQW?6HZDJHB$%B*(B1(:B3,'B6SHHG�$&'

56/RJL[�����

� �
9)'B6WDUW /RFDO���2�'DWD��

� $GG
6RXUFH�$ 3,'B$HURELFB9DOYHB'2B&RQWURO�287
� �����
6RXUFH�% 3,'B$QDHURELFB9DOYHB253B&RQWURO�287
� ���
'HVW 7RWDOB9DOYHB3RVLWLRQ
� �����

$''

� 0XOWLSO\
6RXUFH�$ 7RWDOB9DOYHB3RVLWLRQ
� �����
6RXUFH�% ���
� �
'HVW 9)'B63(('B&200B$1$/2*
� �����

08/

� 0RYH
6RXUFH 9)'B63(('B&200B$1$/2*
� �����
'HVW /RFDO���2�&K�'DWD
� �������

029

�(QG�

Figure 20. Blower-increases or decreases blower speed based on valve.
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'2B&RQWURO���/DGGHU�'LDJUDP �3DJH��
6HZDJH�0DLQ7DVN�0DLQ3URJUDP ������������������$0
7RWDO�QXPEHU�RI�UXQJV�LQ�URXWLQH��� &�?56/RJL[�����?3URMHFWV?6HZDJHB7UHDWPHQW?6HZDJHB$%B*(B1(:B3,'B6SHHG�$&'

56/RJL[�����

� 0RYH
6RXUFH /RFDO���,�&K�'DWD
� ���������
'HVW 'LVVROYHGB2[\JHQ
� ���������

029

�
/RFDO���,�'DWD��

0RYH
6RXUFH 3,'B$HURELFB9DOYHB'2B&RQWURO�39
� ���������
'HVW 3,'B$HURELFB9DOYHB'2B&RQWURO�63
� ���

029

� �
/RFDO���,�'DWD�� /RFDO���2�'DWD��

0RYH
6RXUFH '2B63
� ���
'HVW 3,'B$HURELFB9DOYHB'2B&RQWURO�63
� ���

029

� 3URSRUWLRQDO�,QWHJUDO�'HULYDWLYH
3,' 3,'B$HURELFB9DOYHB'2B&RQWURO �����
3URFHVV�9DULDEOH 'LVVROYHGB2[\JHQ
7LHEDFN �
&RQWURO�9DULDEOH 3RVLWLRQB$HURELFB9DOYH
3,'�0DVWHU�/RRS �
,QKROG�%LW �
,QKROG�9DOXH �
6HWSRLQW ���
3URFHVV�9DULDEOH ���������
2XWSXW�� �����

3,'

� 0RYH
6RXUFH 3,'B$HURELFB9DOYHB'2B&RQWURO�287
� �����
'HVW /RFDO���2�&K�'DWD
� �����

029

�(QG�

Figure 21. DO control-opens aerobic valve to increase or decrease DO and maintain

set point.
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253B&RQWURO���/DGGHU�'LDJUDP �3DJH��
6HZDJH�0DLQ7DVN�0DLQ3URJUDP ������������������$0
7RWDO�QXPEHU�RI�UXQJV�LQ�URXWLQH��� &�?56/RJL[�����?3URMHFWV?6HZDJHB7UHDWPHQW?6HZDJHB$%B*(B1(:B3,'B6SHHG�$&'

56/RJL[�����

� 0RYH
6RXUFH /RFDO���,�&K�'DWD
� ����������
'HVW 253
� ����������

029

�
/RFDO���,�'DWD��

0RYH
6RXUFH 3,'B$QDHURELFB9DOYHB253B&RQWURO�39
� ����������
'HVW 3,'B$QDHURELFB9DOYHB253B&RQWURO�63
� �����

029

� �
/RFDO���,�'DWD��

0RYH
6RXUFH 253B63
� �����
'HVW 3,'B$QDHURELFB9DOYHB253B&RQWURO�63
� �����

029

� 3URSRUWLRQDO�,QWHJUDO�'HULYDWLYH
3,' 3,'B$QDHURELFB9DOYHB253B&RQWURO �����
3URFHVV�9DULDEOH 253
7LHEDFN �
&RQWURO�9DULDEOH 3RVLWLRQB$HURELFB9DOYH
3,'�0DVWHU�/RRS �
,QKROG�%LW �
,QKROG�9DOXH �
6HWSRLQW �����
3URFHVV�9DULDEOH ����������
2XWSXW�� ���

3,'

� 0RYH
6RXUFH 3,'B$QDHURELFB9DOYHB253B&RQWURO�287
� ���
'HVW /RFDO���2�&K�'DWD
� ���

029

�(QG�

Figure 22. ORP control-opens anaerobic valve to increase or decrease ORP and main-

tain set point.
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Appendix C. General Electric Ladder Logic

This logic is executed on the General Electric PLC, allowing it to control the

aeration basin.

3DJH��������������������$0*(B6HZDJHB$%B1(:B3,'��7DUJHW���B0$,1

� &$//
',662

� &$//
253

� &$//
%/:5

� &$//
$/$506

Figure 23. Main-calls all sub-functions for aeration basin.
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3DJH��������������������$0*(B6HZDJHB$%B1(:B3,'��7DUJHW���$/$506

� *(�5($/

'2B6&$/(��� ,1� 4

4�����

��� ,1�

4����������4�����

����/'�%ORFN�
$/$506
��&2,/�������

� /(�5($/

'2B6&$/(��� ,1� 4

4�����

��� ,1�

4����������4�����

����/'�%ORFN�
$/$506
��&2,/�������

� *(�5($/

253B6&$/��� ,1� 4

4�����

��� ,1�

4����������4�����

����/'�%ORFN�
$/$506
��&2,/�������

� /(�5($/

253B6&$/��� ,1� 4

4�����

��� ,1�

4����������4�����

����/'�%ORFN�
$/$506
��&2,/�������

� /(�,17

9)'B9$/9��� ,1� 4

*(�,17

�� ,1� 9)'B9$/9��� ,1� 4

4�����

����� ,1�

4����������4�����

����/'�%ORFN�
$/$506
��&2,/�������

Figure 24. Alarms-sounds alarms if DO or ORP drop below or go above set point.
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3DJH��������������������$0*(B6HZDJHB$%B1(:B3,'��7DUJHW���%/:5

� 6WDUW�WKH�9)'�XVLQJ�WKH�QRUPDOO\�RSHQ�FRQWDFW__9)'�6SHHG�LV�FRQWUROOHG�E\�WKH�YDOYH�SRVLWLRQ

� 9)'B67$5��� 4�����

4����������4�����

����/'�%ORFN�
%/:5
��&2,/�������

� 5HDG�9)'�)UHTXHQF\�IURP�9)'�DQG�FRQYHUW�LW�E\�GLYLGLQJ�E\������QRW�XVHG�DQ\PRUH�

� 029(
,17

$,����

�

,1 4 9)'B63((���

� ',9�,17

9)'B63((��� ,1� 4 9)'B63((���

��� ,1�

� $''�,17 08/�,17

$(52%,&B��� ,1� 4 9)'B9$/9��� 9)'B9$/9��� ,1� 4 9)'B9$/9���

$1$(52%,��� ,1� ��� ,1�

� 029(
,17

9)'B9$/9���

�

,1 4 $4����

� ',9�,17

9)'B9$/9��� ,1� 4 9)'B63((���

��� ,1�

Figure 25. Blower-increases or decreases blower speed based on valve.
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Figure 26. DO control-opens aerobic valve to increase or decrease DO and maintain

set point.
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Figure 27. ORP control-opens anaerobic valve to increase or decrease ORP and main-

tain set point.
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